首页> 外文OA文献 >Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. The relative roles of haem- and glutathione-dependent decomposition of t-butyl hydroperoxide and membrane lipid hydroperoxides in lipid peroxidation and haemolysis
【2h】

Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. The relative roles of haem- and glutathione-dependent decomposition of t-butyl hydroperoxide and membrane lipid hydroperoxides in lipid peroxidation and haemolysis

机译:暴露于叔丁基过氧化氢的红细胞中的脂质过氧化和血红蛋白降解。叔丁基氢过氧化物和膜脂质氢过氧化物的血红素和谷胱甘肽依赖性分解在脂质过氧化和溶血中的相对作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Red cells exposed to t-butyl hydroperoxide undergo lipid peroxidation, haemoglobin degradation and hexose monophosphate-shunt stimulation. By using the lipid-soluble antioxidant 2,6-di-t-butyl-p-cresol, the relative contributions of t-butyl hydroperoxide and membrane lipid hydroperoxides to oxidative haemoglobin changes and hexose monophosphate-shunt stimulation were determined. About 90% of the haemoglobin changes and all of the hexose monophosphate-shunt stimulation were caused by t-butyl hydroperoxide. The remainder of the haemoglobin changes appeared to be due to reactions between haemoglobin and lipid hydroperoxides generated during membrane peroxidation. After exposure of red cells to t-butyl hydroperoxide, no lipid hydroperoxides were detected iodimetrically, whether or not glucose was present in the incubation. Concentrations of 2,6-di-t-butyl-p-cresol, which almost totally suppressed lipid peroxidation, significantly inhibited haemoglobin binding to the membrane but had no significant effect on hexose monophosphate shunt stimulation, suggesting that lipid hydroperoxides had been decomposed by a reaction with haem or haem-protein and not enzymically via glutathione peroxidase. The mechanisms of lipid peroxidation and haemoglobin oxidation and the protective role of glucose were also investigated. In time-course studies of red cells containing oxyhaemoglobin, methaemoglobin or carbonmono-oxyhaemoglobin incubated without glucose and exposed to t-butyl hydroperoxide, haemoglobin oxidation paralleled both lipid peroxidation and t-butyl hydroperoxide consumption. Lipid peroxidation ceased when all t-butyl hydroperoxide was consumed, indicating that it was not autocatalytic and was driven by initiation events followed by rapid propagation and termination of chain reactions and rapid non-enzymic decomposition of lipid hydroperoxides. Carbonmono-oxyhaemoglobin and oxyhaemoglobin were good promoters of peroxidation, whereas methaemoglobin relatively spared the membrane from peroxidation. The protective influence of glucose metabolism on the time course of t-butyl hydroperoxide-induced changes was greatest in carbonmono-oxyhaemoglobin-containing red cells followed in order by oxyhaemoglobin- and methaemoglobin-containing red cells. This is the reverse order of the reactivity of the hydroperoxide with haemoglobin, which is greatest with methaemoglobin. In studies exposing red cells to a wide range of t-butyl hydroperoxide concentrations, haemoglobin oxidation and lipid peroxidation did not occur until the cellular glutathione had been oxidized. The amount of lipid peroxidation per increment in added t-butyl hydroperoxide was greatest in red cells containing carbonmono-oxyhaemoglobin, followed in order by oxyhaemoglobin and methaemoglobin. Red cells containing oxyhaemoglobin and carbonmono-oxyhaemoglobin and exposed to increasing concentrations of t-butyl hydroperoxide became increasingly resistant to lipid peroxidation as methaemoglobin accumulated, supporting a relatively protective role for methaemoglobin. In the presence of glucose, higher levels of t-butyl hydroperoxide were required to induce lipid peroxidation and haemoglobin oxidation compared with incubations without glucose. Carbonmono-oxyhaemoglobin-containing red cells exposed to the highest levels of t-butyl hydroperoxide underwent haemolysis after a critical level of lipid peroxidation was reached. Inhibition of lipid peroxidation by 2,6-di-t-butyl-p-cresol below this critical level prevented haemolysis. Oxidative membrane damage appeared to be a more important determinant of haemolysis in vitro than haemoglobin degradation. The effects of various antioxidants and free-radical scavengers on lipid peroxidation in red cells or in ghosts plus methaemoglobin exposed to t-butyl hydroperoxide suggested that red-cell haemoglobin decomposed the hydroperoxide by a homolytic scission mechanism to t-butoxyl radicals.
机译:暴露于氢过氧化叔丁基的红细胞经历脂质过氧化,血红蛋白降解和己糖一磷酸分流刺激。通过使用脂溶性抗氧化剂2,6-二叔丁基对甲酚,测定了叔丁基氢过氧化物和膜脂质氢过氧化物对氧化性血红蛋白变化和己糖一磷酸分流刺激的相对贡献。大约90%的血红蛋白变化和所有的己糖一磷酸分流刺激都是由叔丁基过氧化氢引起的。其余的血红蛋白变化似乎是由于血红蛋白与膜过氧化过程中产生的脂质氢过氧化物之间的反应所致。将红细胞暴露于氢过氧化叔丁基后,碘量法未检测到脂质过氧化,无论培养中是否存在葡萄糖。几乎完全抑制脂质过氧化的2,6-二叔丁基对甲酚浓度可显着抑制血红蛋白与膜的结合,但对己糖一磷酸分流刺激无明显影响,表明脂质氢过氧化物已被脂质分解。与血红素或血红素蛋白发生反应,而不是通过谷胱甘肽过氧化物酶进行酶促反应。还研究了脂质过氧化和血红蛋白氧化的机制以及葡萄糖的保护作用。在含有氧合血红蛋白,二氧合血红蛋白或碳单氧合血红蛋白的红细胞的时程研究中,不加葡萄糖孵育并暴露于叔丁基过氧化氢中,血红蛋白氧化与脂质过氧化和叔丁基过氧化氢的消耗平行。当所有叔丁基氢过氧化物被消耗时,脂质过氧化停止,这表明它不是自催化的,并且是由引发事件,随后链反应的快速繁殖和终止以及脂质氢过氧化物的快速非酶分解引起的。碳一氧合血红蛋白和氧合血红蛋白是过氧化作用的良好促进剂,而高铁血红蛋白相对地使膜免受过氧化作用。葡萄糖代谢对叔丁基过氧化氢诱导的时间变化的保护作用在含碳一氧合血红蛋白的红细胞中最大,其次是含氧合血红蛋白和甲基化血红蛋白的红细胞。这是氢过氧化物与血红蛋白反应性的逆序,而对血红蛋白而言则是最大的。在将红细胞暴露于各种浓度的叔丁基氢过氧化物的研究中,直到细胞内的谷胱甘肽被氧化后,血红蛋白氧化和脂质过氧化才发生。在含有碳一氧合血红蛋白的红细胞中,添加的叔丁基过氧化氢每增加一次的脂质过氧化量最大,其次是氧合血红蛋白和甲基血红蛋白。随着血红蛋白的积累,含有氧合血红蛋白和碳一氧合血红蛋白并暴露于浓度增加的叔丁基氢过氧化物的红细胞变得越来越能抵抗脂质过氧化,从而支持了对血红蛋白的相对保护作用。与没有葡萄糖的孵育相比,在葡萄糖的存在下,需要更高水平的叔丁基过氧化氢来诱导脂质过氧化和血红蛋白氧化。达到临界水平的脂质过氧化后,暴露于最高水平的叔丁基过氧化氢的含碳一氧合血红蛋白的红细胞进行溶血。低于该临界水平的2,6-二叔丁基对甲酚对脂质过氧化的抑制作用可防止溶血。氧化膜损伤似乎是比血红蛋白降解更重要的体外溶血决定因素。各种抗氧化剂和自由基清除剂对暴露在叔丁基过氧化氢中的红细胞或鬼魂和血红蛋白的脂质过氧化的影响表明,红细胞血红蛋白通过均相分裂机理将氢过氧化物分解为叔丁氧基自由基。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号